Mechanical Verification of a Garbage Collector

Klaus Havelund®
LITP, Institut Blaise Pascal
4, place Jussieu
75252 Paris Cedex 05 France
Email : havelund@litp.ibp.fr
Web : http://cadillac.ibp.fr:8000/ "havelund
Phone: +33 (1)44.27.40.55

May 23, 1996

!Supported by a European Community HCM grant, with origin institution being
DIKU, Institute of Computer Science, University of Copenhagen, Denmark.

Abstract

We describe how the PVS verification system has been used to verify
a safety property of a garbage collection algorithm, originally suggested
by Ben-Ari. The safety property basically says that “nothing but garbage
is ever collected”. Although the algorithm is relatively simple, its paral-
lel composition with a “user” program that (nearly) arbitrarily modifies
the memory makes the verification quite challenging. The garbage collec-
tion algorithm and its composition with the user program is regarded as a
concurrent system with two processes working on a shared memory. Such
concurrent systems can be encoded in PVS as state transition systems, very
similar to the models of, for example, UNITY and TLA. The algorithm is
an excellent test-case for formal methods, be they based on theorem prov-
ing or model checking. Various hand-written proofs of the algorithm have
been developed, some of which are wrong. David Russinoff has verified the
algorithm in the Boyer-Moore prover, and our proof is an adaption of this
proof to PVS. We also model check a finite state version of the algorithm
in the Stanford model checker Murphi, and we compare the result with the
PVS verification.

Contents

Introduction
Informal Specification

Formalization in PVS

3.1 The Memory
3.1.1 Basic Memory Operations
3.1.2 Accessible Nodes
3.1.3 Appending Garbage Nodes

3.2 The Mutator and the Collector
3.2.1 The Mutator
3.2.2 The Collector

Theorem Proving in PVS

4.1 Formulating the Safety Property
4.2 The Proof Technique
4.3 Introducing Some Auxiliary Functions

4.4 The Invariants Lo o
Model Checking in Murphi

Observations

The PVS Formalization

The Murphi Formalization

22
22
24
27
29

33

39

42

65

Chapter 1

Introduction

In [11], Russinoff uses the Boyer-Moore theorem prover to verify a safety
property of a garbage collection algorithm, originally suggested by Ben-Ari
[1]. We will describe how the same algorithm can be formulated in the PVS
verification system [9], and we demonstrate how the safety property can be
verified. An earlier related experiment where we verified a communication
protocol in PVS is reported in [6].

The garbage collection algorithm, the collector, and its composition with
a user program, the mutator, is regarded as a concurrent system with (these)
two processes working on a shared memory. The memory is basically a struc-
ture of nodes, each pointing to other nodes. Some of the nodes are defined
as roots, which are always accessible to the mutator. Any node that can
be reached from a root, chasing pointers, is defined as accessible to the mu-
tator. The mutator changes pointers nearly arbitrarily, while the collector
continuously collects garbage (not accessible) nodes, and puts them into a
free list. The collector uses a colouring technique for bookkeeping purposes:
each node has a colour field associated with it, which is either coloured
black if the node is accessible or white if not. In order to avoid interfer-
ence, between the two processes, the mutator colours the target node of the
redirection black after the redirection. The safety property basically says
that nothing but garbage is ever collected. Although the collector algorithm
is relatively simple, its parallel composition with the mutator makes the
verification quite challenging.

An initial version of the algorithm was first proposed by Dijkstra, Lam-
port, et al. [5] as an exercise in organizing and verifying the cooperation of
concurrent processes. They described their experience as follows:

Our exercise has not only been very instructive, but at times
even humiliating, as we have fallen into nearly every logical trap
possible ...It was only too easy to design what looked — some-
times even for weeks and to many people — like a perfectly valid
solution, until the effort to prove it correct revealed a (sometimes

deep) bug.

Their solution involves three colours. Ben-Ari’s later solution is based on
the same algorithm, but it only uses two colours, and the proof is therefore
simpler. Alternative proofs of Ben-Ari’s algorithm were then later published
by Van de Snepscheut [4] and Pixley [10]. All of these proofs were informal
pencil and paper proofs. Ben-Ari defends this as follows:

So as not to obscure the main ideas, the exposition is limited to
the critical facets of the proof. A mechanically verifiable proof
would need all sorts of trivial invariants . ..and elementary trans-
formations of our invariants (...with appropriate adjustments of
the indices).

These four pieces of work, however, indeed show the problem with hand-
written proofs, as pointed out by Russinoff [11]; the story goes as follows.
Dijkstra, Lamport et al. [5] explained how they (as an example of a “logical
trap”) originally proposed a modification to the algorithm where the mu-
tator instructions were executed in reverse order (colouring before pointer
redirection). This claim was, however, wrong, but was discovered by the
authors before the proof reached publication. Ben-Ari then later again pro-
posed this modification and argued for its correctness without discovering
its flaw. Counter examples were later given in [10] and [4].

Furthermore, although Ben-Ari’s algorithm (which is the one we verify
in PVS) is correct, his proof of the safety property was flawed. This flaw was
essentially repeated in [10] where it yet again survived the review process,
and was only discovered 10 years after when Russinoff detected the flaw
during his mechanical proof [11]. As if the story was not illustrative enough,
Ben-Ari also gave a proof of a liveness property (every garbage node will
eventually be collected), and again: this was flawed as later observed in [4].
To put this story of flawed proofs into a context, we shall cite [11]:

Our summary of the story of this problem is not intended as a
negative commentary on the capability of those who have con-
tributed to its solution, all of whom are distinguished scientists.

Rather, we present this example as an illustration of the in-
evitability of human error in the analysis of detailed arguments
and as an opportunity to demonstrate the viability of mechanical
program verification as an alternative to informal proof.

In [12], Shankar demonstrates how concurrent systems can easily be spec-
ified in PVS as state transition systems, very similar to the models of, for
example, UNITY [3] and TLA [7]. We apply this modeling technique to
represent the garbage collection algorithm. Our own experience in carrying
out a mechanical proof in PVS is that surely a lot of detailed analysis is
required, but it is certainly doable due to the high level of automatization
in PVS. About 20 invariants and 55 lemmas about auxiliary functions are
needed.

We first informally describe the garbage collection algorithm. Then we
formalize it in PVS, where after we carry out the PVS proof of the safety
property. We have also verified a finite state version of the garbage collector
in the Stanford Murphi model checker [8], and in the final discussion chapter
we comment on this extra experiment. A main observation is that Murphi’s
execution model forced us to take some concrete design decisions, that could
be left undecided and abstract in the PVS specification and proof. Also, we
could only verify the algorithm for a particular (small) memory with fixed
bounds. The advantage of Murphi is of course that it is automatic.

Chapter 2

Informal Specification

In this chapter we informally describe the garbage collection algorithm. As
illustrated in figure 2.1, the system consists of two processes, the mutator
and the collector, working on a shared memory.

Q£

ROOTS

2

| In] | |
A WMNEFLO

NODES

1
(&)]

SONS = 4

Figure 2.1: The Mutator, Collector and Shared Memory

The Memory

The memory is a fixed size array of nodes. In the figure there are 5 nodes
(rows) numbered 0 — 4. Associated with each node is an array of uniform

length of cells. In the figure there are 4 cells per node, numbered 0 — 3. A
cell is hence identified by a pair of integers (n,i) where n is a node number
and where 7 is called the index. Each cell contains a pointer to a node, called
the son. In the case of a LISP system, there are for example two cells per
node. In the figure we assume that all empty cells contain the NIL value 0,
hence points to node 0. In addition, node 0 points to node 3 (because cell
(0,0) does so), which in turn points to nodes 1 and 4. Hence the memory can
be thought of as a two-dimensional array, the size of which is determined by
the positive integer constants NODES and SONS. To each node is associated a
colour, black or white, which is used by the collector in identifying garbage
nodes.

A pre-determined number of nodes, defined by the positive integer con-
stant ROOTS, is defined as the roots, and these are kept in the initial part
of the array (they may be thought of as static program variables). In the
figure there are two such roots, separated from the rest with a dotted line.
A node is accessible if it can be reached from a root by following pointers,
and a node is garbage if it is not accessible. In the figure nodes 0, 1, 3 and
4 are therefore accessible, and 2 is garbage.

There are only three operations by which the memory structure can be

modified:

e Redirect a pointer towards an accessible node.
e Change the colour of a node.

e Append a garbage node to the free list.

In the initial state, all pointers are assumed to be 0, and nothing is assumed
about the colours.

The Mutator

The mutator corresponds to the user program and performs the main com-
putation. From an abstract point of view, it continuously changes pointers
in the memory; the changes being arbitrary except for the fact that a cell
can only be set to point to an already accessible node. In changing a pointer
the “previously pointed-to” node may become garbage, if it is not accessible
from the roots in some alternative way. In the figure, any cell can hence be

modified by the mutator to point to anything else than 2. One should think
that only accessible cells could be modified, but the algorithm can in fact
be proved safe without that restriction. Hence the less restricted context as
possible is chosen. The algorithm is as follows:

1. Select a node m, an index ¢, and an accessible node n, and assign n to

cell (m,2).

2. Colour node n black. Return to step 1.

Each of the two steps are regarded as atomic instructions.

The Collector

The collector’s purpose is purely to collect garbage nodes, and put them
into a free list, from which the mutator may then remove them as they are
needed during dynamic storage allocation. Associated with each node is a
colour field, that is used by the collector during it’s identification of garbage
nodes. Basically it colours accessible nodes black, and at a certain point it
collects all white nodes, which are then garbage, and puts them into the free
list. Figure 2.1 illustrates a situation at such a point: only node 2 is white
since only this one is garbage. The collector algorithm is as follows:

1. Colour each root black.

2. Examine each pointer in succession. If the source is black and the
target is white, colour the target black.

3. Count the black nodes. If the result exceeds the previous count (or if
there was no previous count), return to step 2.

4. Examine each node in succession. If a node is white, append it to the
free list; if it is black, colour it white. Then return to step 1.

Steps 1-3 constitutes the marking phase and it’s purpose is to blacken all
accessible nodes. Each iteration within each step is regarded as an atomic
instruction. Hence, for example, step two constists of several atomic instruc-
tions, each counting (or not) a single node.

The Correctness Criteria

The safety property we want to verify is the following: No accessible node
is ever appended to the free list. In [11], the following liveness property is
also verified: Fvery garbage node is eventually collected. As in our previous
work with a protocol verification in PVS and Murphi [6], we have focused
only on safety, since already this requires an effort worth reducing.

Chapter 3

Formalization in PVS

We have followed the formalization of the algorithm in [11] as much as
possible; we have for example used the same names for most of the concepts
introduced. This was done in order to create a better basis for comparison,
and to avoid introducing errors ourself. We did in fact consider reducing
the number of atomic instructions in Rusinoff’s formalization, since there
seems to be more than in the informal algorithm (some of them are “just”
test-and-goto instructions). However, with no changes we feel being on “safe
ground”. The full set of PVS theories is included in appendix A.

3.1 The Memory

3.1.1 Basic Memory Operations

The memory type is introduced in a theory, parameterized with the memory
boundaries, see the figure 3.1 below. That is, NODES, SONS, and ROQTS define
respectively the number of nodes (rows), the number of sons (columns/cells)
per node, and the number of nodes that are roots. They must all be positive
natural numbers (different from 0). There is also an obvious assumption that
ROOTS is not bigger than NODES.

The Memory type is defined as an abstract (non-empty) type upon which
a constant and four functions are defined using the AXIOM construct (an
alternative would have been to define the memory explicitly as a function
from pairs of nodes and indexes to nodes). First, however, some types of
nodes, indexes and roots are defined. The types NODE and INDEX are defined

Memory[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING

Memory : TYPE+

NODE : TYPE = nat
INDEX : TYPE = nat
Node : TYPE = {n : NODE | n < NODES}
Index : TYPE = {i : INDEX | i < SUNS}
Root : TYPE = {r : NODE | r < RUUTS}

Colour : TYPE = bool

null_array : Memory

colour : [NODE -> [Memory -> Colour]]
set_colour : [NODE,Colour -> [Memory -> Memoryl]
son : [NODE,INDEX -> [Memory -> NODE]]
set_son : [NODE,INDEX,NODE -> [Memory -> Memory]]
m : VAR Memory

n,nl,n2,k : VAR Node

i,il1,i2 : VAR Index

c : VAR Colour

mem_ax1 : AXIOM son(n,i) (null_array) = 0

mem_ax2 : AXIOM colour(nl) (set_colour(n2,c) (m))

IF n1=n2 THEN c ELSE colour(ni)(m) ENDIF

mem_ax3 : AXIOM colour(nl)(set_son(n2,i,k)(m))

colour(ni) (m)
mem_ax4 : AXIOM son(nil,il)(set_son(n2,i2,k) (m))
IF ni1=n2 AND i1=i2 THEN k ELSE son(nl,il)(m) ENDIF

mem_ax5 : AXIOM son(nl,i) (set_colour(n2,c)(m)) = son(nl,i) (m)

END Memory

Figure 3.1: The Memory

just by the natural numbers. Our functions will be applied to arguments of
these types.

The types Node and Index are the constrained versions where only natu-
ral numbers below respectively NODES and SONS are considered. These latter
constrained types are used in axioms where universally quantified variables
range over them: we only want our functions to behave correctly within the
boundaries of the memory. In addition the type Colour represents black
with TRUE and white with FALSE.

The reason for not using the constrained types in the signatures of func-
tions is that if we did, the PVS typechecker would generate TCC’s that
we could not prove without considering the execution traces that lead to
the application of these functions. In fact, some of the invariants that we
shall later prove states exactly that these functions are indeed only applied
to values that lie within the constrained types. If one really wants to catch
such “errors” using type checking, then one needs to define a subtype of well-
formed states of the state type that we later will introduce. This, however, is
not simple, and may involve strengthening of this well-formedness predicate
during the proof of TCC’s. We rather prefer to have a PVS specification
type checked quickly without too deep proofs.

The memory is read and modified via four functions, and a constant
null array represents the initial memory containing 0 in all memory cells
(axiom mem_ax1). The function colour returns the colour of a node. The
function set_colour assigns a colour to a node. The function son returns the
pointer contained in a particular cell. That is, the expression son(n,i) (m)
returns the pointer contained in the cell identified by node n and index
i. Finally, the function set_son assigns a pointer to a cell. That is, the
expression set_son(n,i,k) (m) returns the memory m updated in cell (n,1i)
to contain (a pointer to node) k.

3.1.2 Accessible Nodes

In this section we define what it means for a node to be accessible. First,
however, we introduce some functions on lists (figure 3.2).

The function last returns the last element of a non-empty list, while
the function last_index returns the index of the last element in a list.
So for example if 1 = cons(5,cons(7,cons(9,null))), then last(1l) = 9
and last_index(1l) = 2. The next theory (figure 3.3) defines the function
accessible.

10

List_Functions[T:TYPE+] : THEORY
BEGIN

last(1:1ist[T]lcons?(1)) : RECURSIVE T =
IF length(1)=1 THEN
car (1)
ELSE
last(cdr(1))
ENDIF
MEASURE length(1)

last_index(1:1ist[T]|cons?(1)) : nat =
length(1)-1

END List_Functions

Figure 3.2: List Functions

The function points_to defines what it means for one node, n1, to point
to another, n2, in the memory m. The function pointed is a predicate on
lists of nodes, and is TRUE for a list if for any two successive nodes in the
list, the first points to the next in the memory. The function path is also
a predicate on lists of nodes, and is TRUE for a list if that list represents a
non-empty pointed list starting with a root. Finally, a node is accessible
if it is the last element in some path.

3.1.3 Appending Garbage Nodes

In this section we define the operation for appending a garbage node to the
list of free nodes, that can be allocated by the mutator. This operation will
be defined abstractly, assuming as little as possible about it’s behaviour.
Note that, since the free list is supposed to be part of the memory, we could
easely have defined this operation in terms of the functions son and set_son,
but this would have required that we took some design decisions as to how
the list was represented (for example where the head of the list should be
and whether new elements should be added first or last).

The definitions in figure 3.4 belong to the theory Memory Functions that
we introduced part of in figure 3.3.

11

Memory_Functions[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING List_Functions
IMPORTING Memory[NODES,SONS,RO0TS]

m : VAR Memory

points_to(nl,n2:NODE) (m) :bool =
nl < NODES AND n2 < NODES AND
EXISTS (i:Index): son(nl,i) (m)=n2

pointed(p:1list[Node]) (m) :bool =
length(p) >= 2 IMPLIES
FORALL (i:nat|i<last_index(p)):
points_to(nth(p,i) ,nth(p,i+1)) (wm)

path(p:1list[Nodel) (m):bool =
cons?(p) AND car(p) < ROOTS AND pointed(p) (m)

accessible(n:NODE) (m) :bool =
EXISTS (p:list[Node]) : path(p)(m) AND last(p) = n

END Memory_Functions

Figure 3.3: The Predicate accessible

First of all, the predicate closed holds for a memory, if no pointer
points outside the memory. The function append to_free is defined by four
axioms, having the following informal explanation:

append_axl The appending operation leaves colours unchanged.

append_ax2 The appending operation returns a closed memory when ap-
plied to a such.

12

m : VAR Memory

closed(m) :bool =
FORALL (n:Node):
FORALL (i:Index):
son(n,i) (m) < NODES

append_to_free : [NODE -> [Memory -> Memory]]

n,f : VAR Node
i : VAR Index

append_ax1 : AXIOM colour(n) (append_to_free(f)(m)) = colour(n)(m)
append_ax2 : AXIOM closed(m) IMPLIES closed(append_to_free(f) (m))

append_ax3 : AXIOM (NOT accessible(f) (m))
IMPLIES
(accessible(n) (append_to_free(f) (m))
IFF
(n=f OR accessible(n)(m)))

append_ax4 : AXIOM (NOT accessible(f) (m) AND
NOT accessible(n) (m) AND
n /= f)
IMPLIES
son(n, i) (append_to_free(f) (m)) = son(n,i) (m)

Figure 3.4: The append_to_free Operation

append_ax3 In appending a garbage node, only that node becomes acces-
sible, and the accessibility of all other nodes stay unchanged.

append_ax4 In appending a garbage node, no pointer from any other
garbage node is altered.

3.2 The Mutator and the Collector

The mutator and the collector are introduced
in the theory Garbage _Collector in figure 3.5. First of all, each process
has a program counter; the program counter of the mutator ranges over the

13

type MuPC having two values, while the program counter of the collector
ranges over the type CoPC having nine values. The state type is defined as
a record type, which contains the program counters, the memory M, and a
number of other auxiliary variables (the Q variable is used by the mutator,
while BC, OBC, H, I, J, K and L are used by the collector as will be explained
below). The initial values of the state variables are defined by the predicate
initial.

Now, the mutator and the collector are each defined as a transition
relation, being a predicate on pairs of states. Hence, for example if
MUTATOR(s1,s2) holds for two states s1 and s2, it means that starting
in state s1, the mutator can make a transition into state s2. We shall below
show the details of these definitions.

The global transition relation for the whole system, called next, is then
defined as the disjunction between the mutator and the collector: in each
step, either the mutator makes a move, or the collector does. This corre-
sponds to an interleaving semantics of concurrency.

It is finally possible to define what is a trace of the system: it is a
sequence! of states where the first state satisfies the initial predicate, and
where any two consecutive states are related by the next relation.

3.2.1 The Mutator

The mutator has two possible transitions, each defined as a function that
when applied to an old state yields a new state (figure 3.6). MUTATOR(s1,s2)
then holds for two states s1 and s2, if s2 can be obtained from si, by
applying one of the rules.

Each transition function is defined in terms of an IF-THEN-ELSE expres-
sion, where the condition represents the guard of the transition (the situation
where the transition may meaningfully be applied), and where the ELSE part
returns the unchanged state, in case the guard is false?.

1A sequence in PVS is modeled as a function from natural numbers to the type of
the sequence elements, in this case State. Hence a sequence here represents an infinite
enumeration of states. Sequences are defined as part of the PVS prelude.

2This allows for stuttering where rules are applied without changing the state. If done
infinitely often our system would never progress. One way to avoid such behaviour is to
impose certain fairness constraints on execution traces. We shall, however, not do this
since we are only interested in verifying safety properties, where such problems play no
role.

14

Garbage_Collector[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory_Functions[NODES,SONS,RO0TS]

MuPC : TYPE
CoPC : TYPE

{MUo,MU1}
{CHTO,CHI1,CHI2,CHI3,CHI4,CHI5,CHI6,CHI7,CHI8}

State : TYPE =
[# MU : MuPC, CHI : CoPC, Q : NODE, BC : nat, OBC : nat,
H : nat, I : nat, J : nat, K : nat, L : nat,
M : Memory #]

s,81,82 : VAR State
initial(s):bool =
MU(s) = MUO & CHI(s) = CHIO & Q(s) = 0 & BC(s) = 0 & 0OBC(s) =0

& H(s) = 0% I(s) =0 & J(s) =0 & K(s) =0 & L(s) =0
& M(s) = null_array

MUTATOR(s1,s2) :bool = ...

COLLECTOR(s1,s2) :bool = ...

next(s1,s2) :bool =
MUTATOR(s1,s2) OR COLLECTOR(s1,s2)

trace(seq:sequence[State]):bool =
initial(seq(0)) AND
FORALL (n:nat):next(seq(n),seq(n+1))

END Garbage_Collector

Figure 3.5: The Garbage Collector Components

15

% MUO : Redirect arbitrary pointer.

Rule_mutate(m:Node,i:Index,n:Node)(s):State =
IF MU(s) = MUO AND accessible(n)(M(s)) THEN
s WITH [M := set_son(m,i,n)(M(s)), Q := n, MU := MU1]
ELSE s ENDIF

% MU1 : Colour target of redirection.

Rule_colour_target(s):State =
IF MU(s) = MU1 THEN
s WITH [M := set_colour(Q(s),TRUE) (M(s)), MU := MUO]
ELSE s ENDIF

A —
% Combining MUTATOR Rules
A —

MUTATOR(s1,s2) :bool =
(EXISTS (m:Node,i:Index,n:Node): s2 = Rule_mutate(m,i,n)(s1))
OR s2 = Rule_colour_target(s1)

Figure 3.6: The Mutator Transitions

The Rulemutate rule represents the modification of a pointer. It is
parameterized with the cell (m,i) to modify, and the node that this cell
should hereafter point to, n. These parameters are then existentially quan-
tified over in the definition of MUTATOR, corresponding to a non-deterministic
choice® of m, i and n. The rule reads as follows: The values m, i and n are
arbitrarily selected. If the program counter is MUO, and if the target node n
is accessible, then the memory M in the state is updated; Q is set to point
to the new target node, and finally the program counter is changed to MU1.
The rule Rule_colour_target simply colours the target (now pointed to by
Q) of the mutation, and returns control to MUO, enabling another mutation.

®The way we model this non-deterministic choice is quite different from the way it is
modeled in [11], where the state is extended with an extra component which represents
all the unknown factors that influence the choice. There are then special transitions to
update this component.

16

3.2.2 The Collector

The collector (figures 3.7, 3.8, 3.9 and 3.10) uses the auxiliary variables BC
and 0BC for counting black nodes, and H, I, J, K and L for controlling loops.
The program counter ranges over the values CHIO to CHIS.

The Marking Phase (CHIO ...CHI6)

Root Blackening (CHIO) At CHIO all the roots from 0 to ROOTS-1
are blackened. The variable K, having the initial value 0, is used
to loop through the roots. As soon as the roots have been black-
ened (K = ROOTS), the propagation phase is started by setting
the program counter to CHI1.

Propagation (CHI1, CHI2, CHI3) Here all nodes from 0 to NODES-1
reachable from a root via a pointer are blackened. The variable
I, having the initial value 0, is used to loop through the nodes.
At CHI2 it is examined whether the current node is black. If not,
it is just skipped, and I is increased. If it is black, then at CHI3,
all the sons of I are blackened, using the variable J to range over
indexes. When I = NODES, all nodes have been processed, and
the counting phase is started by setting the program counter to
CHIA4.

Counting (CHI4, CHI5, CHI6) At CHI4 and CHI5, the black nodes
are counted in the variable BC. The variable H, having the initial
value 0, is used to loop through the nodes. When the black
nodes have been counted, in CHI6, the new count BC is compared
to the previous count which is stored in 0BC (old black count).
If they differ, then the propagation phase is restarted by setting
the program counter to CHI1. If they are equal, the appending
phase is started at CHI7.

The Appending Phase (CHI7, CHI8) Here all white nodes are appended
to the free list, while all black nodes are just coloured white. The
variable L, having the initial value 0, is used to loop through the nodes.

17

A —
% Blacken Roots

A —
% CHIO : Blacken.

Rule_stop_blacken(s):State =
IF CHI(s) = CHIO AND K(s) = ROOTS THEN
s WITH [I := 0, CHI := CHI1]
ELSE s ENDIF

Rule_blacken(s):State =
IF CHI(s) = CHIO AND K(s) /= ROOTS THEN
s WITH [M := set_colour(K(s),TRUE) (M(s)),K := K(s) + 1,CHI
ELSE s ENDIF

/A
% Propagate Colouring

% CHI1 : Decide whether to continue propagating.

Rule_stop_propagate(s) :State =
IF CHI(s) = CHI1 AND I(s) = NODES THEN
s WITH [BC := 0, H := 0, CHI := CHI4]
ELSE s ENDIF

Rule_continue_propagate(s):State =
IF CHI(s) = CHI1 AND I(s) /= NODES THEN
s WITH [CHI := CHIZ2]
ELSE s ENDIF

% CHI2 : (Continue) Check whether node is black.

Rule_white_node(s):State =
IF CHI(s) = CHI2 AND NOT colour(I(s))(M(s)) THEN
s WITH [I := I(s) + 1, CHI := CHI1]
ELSE s ENDIF

Rule_black_node(s):State =
IF CHI(s) = CHI2 AND colour(I(s))(M(s)) THEN
s WITH [J := 0, CHI := CHI3]
ELSE s ENDIF

1= CHIO]

Figure 3.7: Collector Transitions (a)

18

% CHI3 : (Node is black) Colour each son of node.

Rule_stop_colouring_sons(s):State =
IF CHI(s) = CHI3 AND J(s) = SONS THEN
s WITH [I := I(s) + 1, CHI := CHI1]
ELSE s ENDIF

Rule_colour_son(s):State =
IF CHI(s) = CHI3 AND J(s) /= SONS THEN
s WITH [M := set_colour(son(I(s),J(s)) (M(s)),TRUE) (M(s)),
J :=J(s) + 1, CHI := CHI3]
ELSE s ENDIF

A
% Count Black Nodes

A —
% CHI4 : Decide whether to continue counting.

Rule_stop_counting(s):State =
IF CHI(s) = CHI4 AND H(s)
s WITH [CHI := CHI6]
ELSE s ENDIF

NODES THEN

Rule_continue_counting(s) :State =
IF CHI(s) = CHI4 AND H(s) /= NODES THEN
s WITH [CHI := CHIS]
ELSE s ENDIF

% CHI5 : (Continue) Count one up if black.

Rule_skip_white(s):State =
IF CHI(s) = CHIS5 AND NOT colour(H(s))(M(s)) THEN
s WITH [H := H(s) + 1, CHI := CHI4]
ELSE s ENDIF

Rule_count_black(s) :State =
IF CHI(s) = CHIS5 AND colour(H(s)) (M(s)) THEN
s WITH [BC := BC(s) + 1, H := H(s) + 1, CHI := CHI4]
ELSE s ENDIF

Figure 3.8: Collector Transitions (b)

19

% CHI6 : Compare BC and OBC.

Rule_redo_propagation(s):State =
IF CHI(s) = CHI6 AND BC(s) /= 0BC(s) THEN
s WITH [OBC := BC(s), I := 0, CHI := CHI1]

ELSE s ENDIF

Rule_quit_propagation(s):State =
IF CHI(s) = CHI6 AND BC(s) = 0BC(s) THEN
s WITH [L := 0, CHI := CHI7]
ELSE s ENDIF

S
% Append to Free List

% CHI7 : Decide whether to continue appending.

Rule_stop_appending(s) :State =
IF CHI(s) = CHI7 AND L(s) = NODES THEN
s WITH [BC := 0, OBC := 0, K := 0, CHI := CHIO]
ELSE s ENDIF

Rule_continue_appending(s):State =
IF CHI(s) = CHI7 AND L(s) /= NODES THEN
s WITH [CHI := CHIS8]
ELSE s ENDIF

% CHI8 : (Continue) Append if white.

Rule_black_to_white(s):State =
IF CHI(s) = CHI8 AND colour(L(s))(M(s)) THEN

s WITH [M := set_colour(L(s),FALSE) (M(s)),L := L(s) + 1,CHI := CHI7]
ELSE s ENDIF
Rule_append_white(s):State =
IF CHI(s) = CHI8 AND NOT colour(L(s))(M(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)), L := L(s) + 1, CHI := CHI7]

ELSE s ENDIF

Figure 3.9: Collector Transitions (c)

20

S ———
% Combining COLLECTOR Rules

COLLECTOR(s1,s2) :bool =
s2 Rule_stop_blacken(sl)
OR s2 = Rule_blacken(s1)
OR s2 = Rule_stop_propagate(sl)
OR s2 = Rule_continue_propagate(s1)
OR s2 = Rule_white_node(s1)
OR s2 = Rule_black_node(s1)
OR s2 = Rule_stop_colouring_sons(s1)
OR s2 = Rule_colour_son(s1)
OR s2 = Rule_stop_counting(s1)
OR s2 = Rule_continue_counting(s1)
OR s2 = Rule_skip_white(sl)
OR s2 = Rule_count_black(s1)
OR s2 = Rule_redo_propagation(s1)
OR s2 = Rule_quit_propagation(s1)
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(sl)
OR s2 = Rule_append_white(sl)

Figure 3.10: Collector Transitions (d)

21

Chapter 4

Theorem Proving in PVS

In this chapter we outline the proof of correctness for the garbage collector
algorithm. First, we formulate in PVS what it means for the collector to be
safe. We then outline the technique we have applied to master the relatively
big size of the proof. This technique seems general and useful for verifying
safety properties since it divides the proof into manageable lemmas. Then
we introduce some auxiliary functions (concepts) that are needed during the
proof; and finally, we outline the proof itself by listing the needed invariants.

4.1 Formulating the Safety Property

Let us recall the safety property: no accessible node is ever appended to
the free list. As can bee seen from the collector algorithm in figure 3.9,
the append_to_free operation is only applied at location CHI8 (in the rule
Rule_append white). It is applied to the node L(s), but only if this node
is white: NOT colour(L(s))(M(s)). Hence, the correctness criteria can be
stated as: Whenever the program counler is CHI8, and L is accessible, then
L is black (and will hence not be appended). This is stated in the theory in
figure 4.1.

The theory defines two predicates and a theorem: the correctness cri-
teria. The predicate invariant takes as argument a predicate p on states
(pred[State] is short for the function space [State -> booll). It returns
TRUE if for any execution trace tr of the program: the predicate p holds in
every position of that trace. The safety property we want to verify is de-
fined by the predicate safe. The correctness criteria is then defined by the

22

Garbage_Collector_Proof
[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY

BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Garbage_Collector [NODES,SONS,RO0TS]
invariant (p:pred[State]) :bool =

FORALL (tr:(trace)):
FORALL (n:nat):p(tr(n))

safe(s:State) :bool =
CHI(s) = CHI8 AND accessible(L(s)) (M(s))
IMPLIES
colour(L(s)) (M(s))

safe : THEOREM invariant (safe)

END Garbage_Collector_Proof

Figure 4.1: The Safety Property

23

theorem named safe. The dots ... in the theory refers to extra invariants
that we needed to add (and prove), in order to prove safe (via what we call
invariant strengthening).

4.2 The Proof Technique

We now sketch the principle behind the proof technique we applied. All
definitions that follow are defined in the theory Garbage _Collector Proof,
which we showed a part of in figure 4.1. The predicate we want to prove
true in all accessible states is the predicate safe of figure 4.1. However,
this invariant needs to be greatly strengthened (extended) in order to be
provable. This extension will be discovered in a stepwise manner during the
proof, and not at once.

In principle we could then just go ahead with the proof and extend the
invariant whenever we find it necessary. This does, however, in general
(for non-trivial examples) lead to a big and unhandy invariant. Also, if we
keep extending the invariant as we need, we have to stop the prover for each
extension (since we now modify one of the formulaes) and then redo what we
already had succeeded with. This turns out to be painful and unnecessary.
Instead, we split the invariant into lemmas as shall be illustrated below.

The technique allows in addition the (proofs of) sub-invariants to mutu-
ally depend on each other in a circular way. For example, suppose that we
want to prove the invariant I7, and that we discover that we need to prove
I first, and that further the proof of I; depends on the truthness of I7. Of
course this is not a problem if we simply proved that the conjunction I A I3
is an invariant. However, as just stated, we don’t want to work with this
(potentially big) conjunct, and the proofs of I; and I3 has to be split into
lemmas in such a way that this recursion is allowed (note that PVS does
not directly allow two lemmas to refer to each other — in their proofs that
is). Figure 4.2 outlines (an illustrative subset of) the definitions and lemmas
that we add to the Garbage Collector Proof theory in figure 4.1.

The functions IMPLIES and & are just the corresponding boolean op-
erators lifted to work on state predicates. Next, we define the predi-
cate preserved, with which we can state that a property p is inductive
wrt. our program — relative to some invariant I. That is, the expression
preserved(I) (p) is true if the predicate p is true in the initial state, and

24

Garbage_Collector_Proof
[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
IMPLIES(p1,p2:pred[State]):bool = FORALL (s:State): pl(s) IMPLIES p2(s);
&(pl,p2:pred[State]):pred[State] = LAMBDA (s:State): pl(s) AND p2(s)
preserved(I:pred[State]) (p:pred[State]):bool =
(initial IMPLIES p) AND
FORALL (s1,s2:State): I(s1) AND p(sl) AND next(sl,s2) IMPLIES p(s2)

s : VAR State

invi(s):bool =
inv2(s) :bool

I : pred[State]
pi : [pred[State] -> bool] = preserved(I)

i_invl : LEMMA I IMPLIES invil
i_inv2 : LEMMA I IMPLIES inv2
i_safe : LEMMA I IMPLIES safe

p_invl : LEMMA pi(invl)
p_inv2 : LEMMA pi(inv2)
p_safe : LEMMA pi(safe)

p_I : LEMMA pi(I)
correct : LEMMA invariant (I)

END Garbage_Collector_Proof

Figure 4.2: The Proof

25

if p is preserved by the next-step relation, under the assumption that the
property I holds in the pre-state.

Now we let this I be defined as unknown, and let pi be an instantiation
of preserved with this I. This I is now supposed to represent the unknown
final invariant that we are looking for. For each new invariant we add (like
invl and inv2 — there are 19 in total), we add three declarations: the
definition of the invariant predicate (fx. inv1); a lemma stating that this
invariant is implied by I (fx. i_inv1), and finally that the predicate is
inductive (fx. p_inv1)!. Then during the proof of any pi(...) lemma,
we can refer to all the (up to that point introduced) invariants via the I
IMPLIES ... lemmas.

Finally, when all invariants have been discovered (no new are needed),
we can define I as the conjunction of all the introduced invariants — there
are 19 in our case, however inv13, inv16 and safe are logically implied by
the rest:

I : pred[State] = invl & inv2 & inv3 & inv4 & inv5 &
invé & inv7 & inv8 & inv9 & inv10 &
invill & inv12 & inv14 & inv15 & invi17 &
inv18 & inv19

With this definition all the I IMPLIES ... lemmas can now be proved.
Furthermore, we can prove the pi(I) lemma, which directly leads to the
proof of the invariant(I) lemma, which again leads to the correctness of
the invariant(safe) lemma, and we are done.

The verification of the protocol has been automated as far as possible by
defining a set of tactics. One can say that the proof of the 20 invariants is
(almost) automated “up to” lemmas. That is: if some invariant is provable
given explicitly as assumptions the other invariants and lemmas it depends
on, then it is proved automatically using a single tactic. The obtained level of
automatization could be achieved only because of the flexibility provided by
the PVS decision procedures. When we say almost automated, it means that
in some few cases, we needed to assist the prover — always because the PVS
(inst?) command did not get instantiations right. The program contains
20 transitions, and with 20 invariants this gives 400 (20*20) proofs, and of
these 6 needed manual assistance (two transitions in the proof of inv15 and

'Tt turns out that some invariants are logical consequences of others, and that for these
we can avoid reasoning about the transition relation and just prove the implication.

26

four in inv17), corresponding to 98.5% automatization. It should though
be said that the proofs of lemmas about auxiliary functions were in general
not automatic.

4.3 Introducing Some Auxiliary Functions

During the proof, a collection of auxiliary functions? are needed, mostly
in order to formulate the new invariants, that are introduced to prove the
original invariant. These functions are introduced in figure 4.3.

The predicates < and <= define lexicographic ordering on node-index
pairs, where each such pair identifies a cell in our memory. The projection
function PROJ_i (for i € {1,2})selects the i’th component of a tuple. Hence,
for example (2,3) < (3,0).

The rest of the functions are explained as follows. The expres-
sion blacks(l,u)(m) returns the number of black nodes between 1 (in-
cluded) and u (excluded). In particular, blacks(0,NODES) (m) repre-
sents the total number of black nodes in the memory m. The expression
black roots(u) (m) returns true if all the nodes below u are black. In
particular, black_roots(ROOTS) (m) if all roots are black. The expression
bw(n,i) (m) returns true if node n is black and the son of cell (n,1i) is white.
The expression exists bw(nl,i1,n2,i2) (m) returns true if there exists a
pointer between (n1,i1) and (n2,i2) from a black node to a white node.
The expression propagated(m) returns true if no black node points to a
white node. Finally, blackened(1) (m) returns true if all nodes above (and
including) 1 are black if they are accessible.

55 lemmas are needed (and proved) about these functions in order to
carry out the proof of the safety property. These lemmas are given in
the theory Memory Properties in the appendix. In addition, the theory
List Properties in the appendix also contains 15 lemmas about various
general list processing functions. This should be compared to Russinoff’s
”over one hundred lemmas characterizing the behavior of relevant functions”
in [11].

2These functions were not spelled out in [11], although their informal descriptions were
given. Furthermore, no properties about these functions were presented.

27

Memory_Observers[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
ASSUMING roots_within : ASSUMPTION ROOTS <= NODES ENDASSUMING
IMPORTING Memory_Functions[NODES,SONS,RO0TS]

m : VAR Memory

<(p1,p2: [NODE, INDEX]) :bool =
LET
ni = PROJ_1(p1), i1 = PROJ_2(p1), n2 = PROJ_1(p2), i2 = PROJ_2(p2)
IN
nl < n2 OR (n1 = n2 AND il < i2);

<=(p1,p2: [NODE,INDEX]) :bool = pl < p2 OR pl = p2

blacks(1l,u:NODE) (m) : RECURSIVE nat =
IF 1 < u AND 1 < NODES THEN
IF colour(1l)(m) THEN 1 ELSE O ENDIF + blacks(l+1,u) (m)
ELSE O ENDIF
MEASURE abs (u-1)

black_roots (u:NODE) (m) :bool = FORALL (r:Root| r < u): colour(r) (m)
bw(n:NODE,i:INDEX) (m) :bool =
n < NODES AND i < SONS AND
colour(n) (m) AND NOT colour(son(n,i) (m)) (m)
exists_bw(nl:NODE,i1:INDEX,n2:NODE,i2:INDEX) (m):bool =
EXISTS (n:Node,i:Index):
bw(n,i) (mn) AND NOT (n,i) < (n1,il) AND (n,i) < (n2,i2)

propagated(m):bool = NOT exists_bw(0,0,NODES,0) (m)

blackened(1:NODE) (m) :bool =
FORALL (n:Nodel|l <= n): accessible(n)(m) IMPLIES colour(n) (m)

END Memory_0Observers

Figure 4.3: Auxiliary Functions

28

4.4 The Invariants

The invariants defined and proved are given in figures 4.4, 4.5 and 4.6.

29

invi(s):bool =
I(s) <= NODES AND

((CHI(s)=CHI2 OR CHI(s)=CHI3) IMPLIES I(s) < NODES)

inv2(s): bool =
J(s) <= SONS

inv3(s) :bool =
K(s) <= ROOTS

inv4(s) :bool =
H(s) <= NODES AND
(CHI(s)=CHI5 IMPLIES H(s)
(CHI(s)=CHI6 IMPLIES H(s)

inv5(s) :bool =
L(s) <= NODES AND
(CHI(s)=CHI8 IMPLIES L(s)

inv6(s) :bool =
Q(s) < NODES

inv7(s):bool =
closed(M(s))

inv8(s) :bool =

<

NODES) AND
NODES)

NODES)

(CHI(s)=CHI4 OR CHI(s)=CHI5) IMPLIES BC(s) <= blacks(0,H(s)) (M(s))

inv9(s) :bool =

CHI(s)=CHI6 IMPLIES BC(s) <= blacks(0,NODES) (M(s))

inv10(s) :bool =

(CHI(s)=CHIO OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3)

IMPLIES

0BC(s) <= blacks(0,NODES) (M(s))

Figure 4.4: Invariants (a)

30

inv11(s) :bool =
(CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6)
IMPLIES
OBC(s) <= BC(s) + blacks(H(s),NODES) (M(s))

inv12(s):bool =
BC(s) <= NODES

inv13(s):bool =
CHI(s)=CHI6 IMPLIES 0BC(s) <= BC(s)

inv14(s) :bool =
(CHI(s)=CHIO OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3 OR
CHI(s)=CHI4 DR CHI(s)=CHI5 OR CHI(s)=CHI6)
IMPLIES
black_roots(IF CHI(s)=CHIO THEN K(s) ELSE ROOTS ENDIF) (M(s))

inv15(s) :bool =
FORALL (n:Node,i:Index):

(((CHI(s)=CHI1 DR CHI(s)=CHI2 DR CHI(s)=CHI3) AND
blacks (0,NODES) (M(s)) = OBC(s) AND
(n,i) < (I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) AND
bw(n,i) M(s)))

IMPLIES
(MU (s)=MU1 AND son(n,i) (M(s))=Q(s)))

inv16(s) :bool =
((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks (0,NODES) (M(s)) = 0BC(s) AND
exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) (M(s)))
IMPLIES
MU (s)=MU1

Figure 4.5: Invariants (b)

31

inv17(s) :bool =
((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks (0,NODES) (M(s)) = OBC(s) AND
exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) (M(s)))
IMPLIES
exists_bw(I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF,NODES,0) (M(s))

inv18(s) :bool =
((CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6) AND
OBC(s) = BC(s) + blacks(H(s),NODES) (M(s)))
IMPLIES
blackened(0) (M(s))

inv19(s) :bool =
(CHI(s)=CHI7 OR CHI(s)=CHIS8)
IMPLIES
blackened(L(s)) (M(s))

Figure 4.6: Invariants (c)

32

Chapter 5

Model Checking in Murphi

In this chapter, we shortly outline our experience with encoding the garbage
collector in the Murphi model checker [8]. The full formal Murphi program
is contained in appendix B.

Murphi uses a program model that is similar to those of UNITY [3] and
TLA [7], hence the one we have used in our PVS specification. A Murphi
program has three components: a declaration of the global variables, a de-
scription of the initial state, and a collection of transition rules. Each transi-
tion rule is a guarded command that consists of a boolean guard expression
over the global variables, and a deterministic statement that changes the
global variables. In addition, one can state invariant conditions to be veri-

fied.

An execution of a Murphi program is obtained by repeatedly (1) arbi-
trarily selecting one of the transition rules where the boolean guard is true
in the current state; (2) execuling the statement of the chosen transition
rule. The statement is executed atomically: no other transition rules are
executed in parallel. Thus state transitions are interleaving and processes
communicate via shared variables. The notion of process is not formally
supported, but may be thought of as a subset of the transition rules. The
Murphi verifier tries to explore all reachable states in order to ensure that
all invariants hold. If a violation is detected, Murphi generates a violating
trace.

The reader is referred to the appendix for the details of the model. Here
we shall focus on the differences between the PVS model and the Murphi
model. The two principal advantages of PVS are that (1): in PVS we can

33

Const

NODES : 3;
SONS : 2;
ROOTS : 1;

Figure 5.1: The Choice of Fixed boundaries

verify a parameterized program, whereas in Murphi we are limited to a finite
state program; and: (2) in PVS we can be abstract at the algorithmic level,
whereas in Murphi we have to make certain design choices. The advantage
of Murphi is that verification is automatic, whereas in PVS we have to
manually assist the proof.

Infinite Versus Finite State

The first obvious difference concerns the size of the memory. In PVS, the
boundaries (NODES, SONS and ROOTS) are unspecified parameters (figure 3.1),
hence the correctness does not depend on their specific values. The garbage
collector is therefore verified for any size of memory. In the Murphi pro-
gram, on the other hand, we have to fix the boundaries to particular natural
numbers. In our case, we verified the algorithm with the following values:
NODES = 3, SONS = 2 and ROOTS = 1 (figure 5.1).

In this context, Murphi used 2895 seconds to verify the invariant, ex-
ploring 415633 states and firing 3659911 transition rules. It turned out that
Murphi was unable to verify bigger memories within reasonable time (days).

Abstractness of Memory

The PVS memory is abstractly specified in terms of a set of axioms (figure
3.1). Although we think of the memory as an array of two dimensions, this
is in fact not required by an implementation. In the Murphi program, on
the other hand, we need to choose an implementation of the memory, and
we have chosen to model it as a two dimensional array as illustrated in figure
5.2.

34

Type
Node : 0..NODES-1;
Index : 0..30NS-1;
Colour : boolean;
NodeStruct : Record
colour : Colour;
cells : Array[Index] 0f Node;
End;

Var
M : Array[Node] 0f NodeStruct;

Function colour(n:Node):Colour;
Begin

Return M[n].colour;
End;

Procedure set_colour(n:Node;c:Colour);
Begin

M[n].colour := c;
End;

Function son(n:Node;i:Index):Node;
Begin

Return M[n].cells[i]
End;

Procedure set_son(n:Node;i:Index;k:Node);
Begin

M[n].cells[i] := k;
End;

Figure 5.2: The Memory

35

Procedure append_to_free(new_free:Node);
Var
old_first_free : Node;
Begin
old_first_free := son(0,0);
set_son(0,0,new_free);
For i:Index Do set_son(new_free,i,old_first_free) EndFor;
End;

Figure 5.3: The append_to_free Operation

Abstractness of the Append Operation

The PVS append operation is abstractly specified in terms of a set of axioms
(figure 3.4). Hence we have made no decisions for example as to where is the
head of the free list, or whether to append elements first or last. In Murphi
we are obliged to take such decisions. Figure 5.3 shows how we have chosen
cell (0,0) to be the head of the list, such that new elements are added to the
front.

Abstractness of the Accessibility Predicate

The PVS accessible predicate is specified in an abstract manner using
existential quantification over paths (figure 3.3). Such a formulation is not
possible in Murphi, where we have to code an algorithm that marks nodes
already visited during the examination of accessible nodes. This is to avoid
a looping behaviour in case of cyclic accessibility in the memory. Figure 5.4
illustrates the algorithm.

36

Function accessible(n:Node) :boolean;

Type

Status : Enum{TRY,UNTRIED,TRIED};
Var

status : Array[Node] Of Status;

s : Node;

try_again : boolean;
Begin
For k:Node Do
status[k] := (is_root(k) ? TRY : UNTRIED)
EndFor;
try_again := true;
While try_again Do
try_again := false;
For k:Node Do
If status[k]=TRY Then
For j:Index Do

s := son(k,j);

If status[s]=UNTRIED Then
status[s] := TRY;
try_again := true;

End;

EndFor;
status[k] := TRIED;
End;
EndFor;
End;
Return status[n]=TRIED
End;

Figure 5.4: The accessible Predicate

37

38

Chapter 6

Observations

The properties that we formulated and proved in PVS can be divided into
two classes: invariants and properties about auxiliary functions; we call the
latter just lemmas. There were 20 invariants, the same as in [11], and there
were 55 lemmas, whereas [11] has over 100. It’s however not clear what
the reason for this reduction is, since [11] does not contain the lemmas.
98.5% of our invariant proofs were automatic, once the lemmas and other
invariants needed as assumptions were identified. That is, observing that
the program has 20 possible transitions and that there were 20 invariants,
there were hence 20*20 = 400 transition proofs, whereof 6 needed manual
assistance. The assistance always consisted of guiding the instantiation of
universally quantified assumptions when the PVS (inst?) command did
not succeed in finding the right instantiations. Many of the lemmas needed
manual assistance. The proof took 1.5 month of effort.

Our proof follows [11] closely (except for the lemmas about auxiliary
functions); which again follows [1]. Hence, the proof is in fact a mecha-
nization of a handwritten proof. An important direction of research is to
minimize the manual effort in such proofs, hence putting less imagination
into the theorem proving. Model checking is an example of verification where
no imagination is required since it is automatic, but it only works for finite
state systems of small size. In our case, applying Murphi, we had to fix the
boundaries of the memory, and we had to make concrete implementation
choices at the algorithmic level as well as at the datatype level.

Future work consists of reducing the proof effort in PVS for this exam-
ple. We intend to redo the proof in a goal oriented style, starting with the

39

safety property, and then only proving properties that are explicitly required.
Typically, the proof of the safety property will fail, the result being a set
of unproved sequents. Basically, the conjunction of these sequents form the
new invariant to prove, and the process continues. This style of proof was
applied in [6] to a communications protocol, where it worked well. A partic-
ular hard problem seems to be the occurrence of loops in this strengthening
process, implying possibly infinite strengthening. Another branch of work
is to apply automatic invariant generation techniques, for example those
described in [2].

Acknowledgments. Natarajan Shankar (SRI) originally suggested the
example as an interesting test case for PVS. Sam Owre (SRI) has assisted
with the use of PVS. John Rushby (SRI) facilitated my visit to SRI, Califor-
nia, USA; and Therese Hardin (LITP) provided a stimulating environment
at LITP in Paris, France.

40

41

Appendix A

The PVS Formalization

List_Functions[T:TYPE+] : THEORY
BEGIN

last(1:1ist[T]lcons?(1)) : RECURSIVE T =
IF length(1)=1 THEN
car(1l)
ELSE
last(cdr(1))
ENDIF
MEASURE length(1)

last_index(1:1ist[T]|cons?(1)) : nat =
length(1)-1

suffix(1l:1ist[T],n:nat |[n < length(1l)) : RECURSIVE 1list[T] =
IF n=0 THEN
1
ELSE
suffix(cdr(l),n-1)
ENDIF
MEASURE length(1)

last_occurrence(x:T,1:1ist[T] | member(x,1l)):nat =
epsilon! (idx:nat):
idx <= last_index(1) AND
nth(l,idx) = x AND
(idx < last_index(1) IMPLIES NOT member(x,suffix(1l,idx+1)))

END List_Functions

42

List_Properties[T:TYPE+] : THEORY

BEGIN

IMPORTING List_Functions[T]

e

P
n,k

lengthil :

length2 :

memberl

member? :

carl

lastl

last?2

last3

last4

lastb

suffixi

: LEMMA cons?(12) IMPLIES last(append(11,12))

: LEMMA cons?(1) IMPLIES nth(l,last_index(1))

: VAR T
1,11,12 :
: VAR pred[T]
: VAR nat

VAR 1ist[T]

LEMMA cons?(1l) IMPLIES length(cdr(l)) = length(1)-1

LEMMA length(append(11,12)) = length(11) + length(12)

: LEMMA member(e,l) =

EXISTS n : (n < length(l) AND nth(l,n)=e)

LEMMA member(e,1) IMPLIES
EXISTS (x: nat):
x <= last_index(1) AND
nth(1,x) = e AND
(x < last_index(1) IMPLIES
NOT member(e,suffix(l,x+1)))

: LEMMA cons?(11) IMPLIES car(append(11,12)) = car(1l1)
: LEMMA length(1)>=2 IMPLIES last(1l)=last(cdr(1))
: LEMMA last(cons(e,null)) = e

: LEMMA (length(1l) >=2 AND

p(car(l)) AND

NOT p(last(1)))
IMPLIES

EXISTS (i:nat|i<last_index(1)):
p(nth(1,i)) AND NOT p(nth(1,i+1))

last(12)

last (1)

: LEMMA (length(1l) > O AND n <= last_index(1))

IMPLIES
cons?(suffix(1, n))

43

suffix2 : LEMMA (length(l) > O AND n <= last_index(1))
IMPLIES
car(suffix(1,n)) = nth(1l,n)
suffix3 : LEMMA (length(l) > O AND n <= last_index(1))
IMPLIES
last(suffix(1,n)) = last(1)
suffix4 : LEMMA n < length(1l) IMPLIES length(suffix(1l,n)) = length(l) - n

suffix5 : LEMMA n+k < length(1l) IMPLIES
nth(suffix(1,n),k) = nth(l,n+k)

END List_Properties

Memory[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

Memory : TYPE+

NODE : TYPE
INDEX : TYPE

nat

nat

Node : TYPE = {n : NODE | n < NODES}
Index : TYPE = {i : INDEX | i < SONS}
Root : TYPE = {r : NODE | r < ROOTS}

Colour : TYPE

bool

null_array : Memory

colour : [NODE -> [Memory -> Colour]]
set_colour : [NODE,Colour -> [Memory -> Memory]]
son : [NODE,INDEX -> [Memory -> NODE]]
set_son : [NODE,INDEX,NODE -> [Memory -> Memory]]
m : VAR Memory

n,nl,n2,k : VAR Node

i,il1,i2 : VAR Index

c : VAR Colour

44

mem_ax1 : AXIOM son(n,i) (null_array) = 0

mem_ax?2 : AXIOM colour(nl) (set_colour(n2,c) (m))

IF n1=n2 THEN c ELSE colour(ni1)(m) ENDIF

mem_ax3 : AXIOM colour(nl) (set_son(n2,i,k)(m))

colour(ni) (m)

mem_ax4 : AXIOM son(nil,il)(set_son(n2,i2,k)(m))

IF n1=n2 AND i1=i2 THEN k ELSE son(nl,il)(m) ENDIF
mem_ax5 : AXIOM son(nil,i) (set_colour(n2,c)(m)) = son(nl,i) (m)

END Memory

Memory_Functions[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING List_Functions
IMPORTING Memory [NODES,SONS,RO0TS]

m : VAR Memory

closed(m) :bool =
FORALL (n:Node):
FORALL (i:Index):
son(n,i) (m) < NODES

points_to(nl,n2:NODE) (m) :bool =
nl < NODES AND n2 < NODES AND
EXISTS (i:Index): son(nl,i)(m)=n2

pointed(p:list[Node]) (m):bool =
length(p) >= 2 IMPLIES
FORALL (i:nat|i<last_index(p)):
points_to(nth(p,i),nth(p,i+1)) (wm)

path(p:1list[Nodel) (m):bool =

45

cons?(p) AND car(p) < ROOTS AND pointed(p) (m)

accessible(n:NODE) (m) :bool =
EXISTS (p:list[Node]) : path(p)(m) AND last(p) = n

append_to_free : [NODE -> [Memory -> Memory]]

n,f : VAR Node
i : VAR Index

append_ax1 : AXIOM colour(n) (append_to_free(f) (m)) = colour(n)(m)
append_ax2 : AXIOM closed(m) IMPLIES closed(append_to_free(f) (m))

append_ax3 : AXIOM (NOT accessible(f) (m))
IMPLIES
(accessible(n) (append_to_free(f) (m))
IFF
(n=f OR accessible(n)(m)))

append_ax4 : AXIOM (NOT accessible(f) (m) AND
NOT accessible(n) (m) AND
n /= f)
IMPLIES
son(n, i) (append_to_free(f) (m)) = son(n,i) (m)

END Memory_Functions

Garbage_Collector[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Memory_Functions[NODES,SONS,RO0TS]

MuPC : TYPE
CoPC : TYPE

{MUo,MU1}
{CHIO,CHI1,CHI2,CHI3,CHI4,CHI5, CHI6,CHI7 ,CHI8)

State : TYPE =
[# MU : MuPC,

CHI : CoPC,
Q : NODE,
BC : nat,

46

0BC : nat,
: nat,
: nat,
: nat,
: nat,
: nat,
M : Memory
#]

= o Hm

s,81,82 : VAR State

initial(s) :bool =

MU(s) = MUO
& CHI(s) = CHIO
& Q(s) =0
& BC(s) =0
& OBC(s) = 0
& H(s) =0
& I(s) =0
& J(s) =0
& K(s) =0
& L(s) =0
& M(s) = null_array

VAN AN AN YA YA YA YA YA N A S
% The MUTATOR Process %
AN YA YA YA YA YA YA NA S

% MUO : Redirect arbitrary pointer.
Rule_mutate(m:Node,i:Index,n:Node)(s):State =

IF MU(s) = MUO AND accessible(n)(M(s)) THEN
s WITH [M := set_son(m,i,n)(M(s)),

Q :=n,
MU := MU1]
ELSE
S
ENDIF

% MU1 : Colour target of redirection.

Rule_colour_target(s):State =
IF MU(s) = MU1 THEN
s WITH [M := set_colour(Q(s),TRUE) (M(s)),
MU := MUO]
ELSE
s

47

MUTATOR(s1,s2) :bool =
(EXISTS (m:Node,i:Index,n:Node): s2 = Rule_mutate(m,i,n)(s1))
OR s2 = Rule_colour_target(s1)

AN AN YA YA AN A YA
% The COLLECTOR Process %
Kbt h oottt ot oto o to o tototo oo s

% CHIO : Blacken.

Rule_stop_blacken(s):State =
IF CHI(s) = CHIO AND K(s) = ROOTS THEN
s WITH [I := 0,
CHI := CHI1]
ELSE
s
ENDIF

Rule_blacken(s):State =
IF CHI(s) = CHIO AND K(s) /= ROOTS THEN
s WITH [M := set_colour(K(s),TRUE) (M(s)),
K :=K(s) + 1,
CHI := CHIO]
ELSE

ENDIF

% CHI1 : Decide whether to continue propagating.
Rule_stop_propagate(s) :State =

IF CHI(s) = CHI1 AND I(s) = NODES THEN
s WITH [BC := 0,

48

H :=0,
CHI := CHI4]
ELSE
s
ENDIF

Rule_continue_propagate(s):State =
IF CHI(s) = CHI1 AND I(s) /= NODES THEN
s WITH [CHI := CHIZ2]
ELSE
s
ENDIF

% CHI2 : (Continue) Check whether node is black.

Rule_white_node(s):State =
IF CHI(s) = CHI2 AND NOT colour(I(s))(M(s)) THEN
s WITH [I := I(s) + 1,
CHI := CHI1]
ELSE
s
ENDIF

Rule_black_node(s):State =
IF CHI(s) = CHI2 AND colour(I(s)) (M(s)) THEN
s WITH [J := 0,
CHI := CHI3]
ELSE
s
ENDIF

% CHI3 : (Node is black) Colour each son of node.

Rule_stop_colouring_sons(s):State =
IF CHI(s) = CHI3 AND J(s) = SONS THEN
s WITH [I := I(s) + 1,
CHI := CHI1]
ELSE
s
ENDIF

Rule_colour_son(s):State =
IF CHI(s) = CHI3 AND J(s) /= SONS THEN
s WITH [M := set_colour(son(I(s),J(s))(M(s)),TRUE) (M(s)),
J :=J(s) + 1,
CHI := CHI3]
ELSE

49

% Count Black Nodes

% CHI4 : Decide whether to continue counting.

Rule_stop_counting(s):State
IF CHI(s) = CHI4 AND H(s)
s WITH [CHI := CHI6]
ELSE
s
ENDIF

NODES THEN

Rule_continue_counting(s):State =
IF CHI(s) = CHI4 AND H(s) /= NODES THEN
s WITH [CHI := CHIS]
ELSE
s
ENDIF

% CHI5 : (Continue) Count one up if black.

Rule_skip_white(s):State =
IF CHI(s) = CHI5 AND NOT colour(H(s))(M(s)) THEN
s WITH [H := H(s) + 1,
CHI := CHI4]
ELSE
s
ENDIF

Rule_count_black(s):State =
IF CHI(s) = CHI5 AND colour(H(s)) (M(s)) THEN
s WITH [BC := BC(s) + 1,
H := H(s) + 1,
CHI := CHI4]
ELSE
s
ENDIF

% CHI6 : Compare BC and OBC.
Rule_redo_propagation(s):State =

IF CHI(s) = CHI6 AND BC(s) /= OBC(s) THEN
s WITH [0OBC := BC(s),

50

I:=0,
CHI := CHI1]

ELSE
s
ENDIF
Rule_quit_propagation(s):State =
IF CHI(s) = CHI6 AND BC(s) = 0OBC(s) THEN
s WITH [L := 0,
CHI := CHI7]
ELSE
s
ENDIF

% Append to Free List
S

% CHI7 : Decide whether to continue appending.

Rule_stop_appending(s) :State =
IF CHI(s) = CHI7 AND L(s) = NODES THEN
s WITH [BC := 0,
0BC := 0,

K :=0,
CHI := CHIO]
ELSE
s
ENDIF

Rule_continue_appending(s):State =
IF CHI(s) = CHI7 AND L(s) /= NODES THEN
s WITH [CHI := CHIS8]
ELSE
s
ENDIF

% CHI8 : (Continue) Append if white.

Rule_black_to_white(s):State =
IF CHI(s) = CHI8 AND colour(L(s)) (M(s)) THEN
s WITH [M := set_colour(L(s),FALSE) (M(s)),
L :=L(s) + 1,
CHI := CHI7]
ELSE

51

ENDIF

Rule_append_white(s):State =
IF CHI(s) = CHI8 AND NOT colour(L(s))(M(s)) THEN
s WITH [M := append_to_free(L(s)) (M(s)),
L :=L(s) + 1,
CHI := CHI7]
ELSE

ENDIF

COLLECTOR(s1,s2):bool =
s2 = Rule_stop_blacken(sl)
OR s2 = Rule_blacken(sl)
OR s2 = Rule_stop_propagate(s1l)
OR s2 = Rule_continue_propagate(s1)
OR s2 = Rule_white_node(s1)
OR s2 = Rule_black_node(s1)
OR s2 = Rule_stop_colouring_sons(sl)
OR s2 = Rule_colour_son(s1)
OR s2 = Rule_stop_counting(s1)
OR s2 = Rule_continue_counting(s1)
OR s2 = Rule_skip_white(sl)
OR s2 = Rule_count_black(s1)
OR s2 = Rule_redo_propagation(s1)
OR s2 = Rule_quit_propagation(s1)
OR s2 = Rule_stop_appending(s1)
OR s2 = Rule_continue_appending(s1)
OR s2 = Rule_black_to_white(sl)
OR s2 = Rule_append_white(s1)

bbbt bl bbbl bt bt toto ot bttt o
% The Transition Relation %

DDt h o Toto oot ate oo to oo Toto T

next(s1,s2):bool =
MUTATOR(s1,s2) OR COLLECTOR(s1,s2)

YAYANYYAYANS
% Traces %

AAANAANNN

52

IMPORTING sequences
trace(seq:sequence[State]):bool =
initial(seq(0)) AND
FORALL (n:nat):next(seq(n),seq(n+1))

END Garbage_Collector

Memory_Observers[NODES : posnat, SONS : posnat, ROOTS : posnat]
BEGIN
ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING
IMPORTING Memory_Functions[NODES,SONS,RO0TS]

m : VAR Memory

<(p1,p2: [NODE, INDEX]) :bool =

LET
nl = PROJ_1(p1), il = PROJ_2(p1),
n2 = PROJ_1(p2), i2 = PROJ_2(p2)
IN

nl < n2 OR (n1 = n2 AND i1 < 1i2);

<=(pl,p2: [NODE, INDEX]) :bool =
pl < p2 OR pl1 = p2

blacks(1l,u:NODE)(m) : RECURSIVE nat =
IF 1 < u AND 1 < NODES THEN
IF colour(1l)(m) THEN 1 ELSE O ENDIF + blacks(l+1,u)(m)
ELSE
0
ENDIF
MEASURE abs (u-1)

black_roots(u:NODE) (m) :bool =
FORALL (r:Root| r < u): colour(r) (m)

bw(n:NODE,i:INDEX) (m) :bool =
n < NODES AND i < SONS AND
colour(n)(m) AND NOT colour(son(n,i) (m)) (m)

exists_bw(nl:NODE,i1:INDEX,n2:NODE,i2:INDEX) (m):bool =

53

: THEORY

EXISTS (n:Node,i:Index):
bw(n,i) (m) AND
NOT (n,i) < (n1,il1) AND
(n,i) < (n2,i2)

propagated(m) :bool =
NOT exists_bw(0,0,NODES,0) (m)

blackened(1:NODE) (m) :bool =
FORALL (n:Nodel|l <= n):
accessible(n) (m) IMPLIES colour(n) (m)

END Memory_0Observers

Memory_Properties[NODES : posnat, SONS : posnat, ROOTS : posnat] : THEORY
BEGIN

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING List_Properties
IMPORTING Memory_Functions[NODES,SONS,RO0TS]
IMPORTING Memory_Observers[NODES,SONS,RO0TS]

abs(i:int):nat = IF i < 0 THEN -i ELSE i ENDIF
m : VAR Memory

n,nl,n2,k : VAR Node
i,i1,i2,j : VAR Index

[: VAR Colour

X : VAR nat

N,N1,N2 : VAR NODE

I,I11,12 : VAR INDEX

1,11,12 : VAR list[Node]

smalleri : LEMMA NOT (n,i) < (0,0)

smaller?2 : LEMMA (NOT (n,i) < (k,0) AND (n,i) < (k+1,0)) IMPLIES n = k
smaller3 : LEMMA (n,i) < (k,SONS) IFF (n,i) < (k+1,0)

smaller4 : LEMMA (NOT (n,i) < (k,j) AND (n,i) < (k,j+1)) IMPLIES

(n,1)=(k,j)

54

closedl : LEMMA closed(null_array)

closed?2 : LEMMA closed(set_colour(n,c)(m)) = closed(m)

closed3 : LEMMA closed(m) IMPLIES closed(set_son(n,i,k)(m))

closed4 : LEMMA closed(m) IMPLIES son(n,i)(m) < NODES

blacks1 : LEMMA blacks(N1,N2)(set_son(n,i,k)(m)) = blacks(N1,N2) (m)
blacks?2 : LEMMA blacks(N1,N2)(m) <= blacks(N1,N2) (set_colour(n,TRUE) (m))
blacks3 : LEMMA NOT colour(n2) (m) IMPLIES

blacks(nl,n2+1) (m) = blacks(nl,n2)(m)

blacks4 : LEMMA ni<=n2 AND colour(n2)(m) IMPLIES
blacks(nl,n2+1) (m) = blacks(nl,n2)(m) + 1

blacks5 : LEMMA NOT colour(ni) (m) IMPLIES
blacks(n1,N2)(m) = blacks(ni+1,N2) (m)

blacksé : LEMMA (n1<N2 AND colour(n1)(m)) IMPLIES
blacks(n1,N2)(m) = blacks(ni+1,N2)(m) + 1

blacks7 : LEMMA N1 <= N2 IMPLIES blacks(N1,N2)(m) <= N2-N1

blacks8 : LEMMA (n < N1 OR n >= N2) IMPLIES
blacks(N1,N2) (set_colour(n,c)(m)) = blacks(N1,N2) (m)

blacks9 : LEMMA (n >= N1 AND n < N2 AND NOT colour(n)(m)) IMPLIES
blacks(N1,N2) (set_colour(n,TRUE)(m)) =
blacks(N1,N2) (m) + 1
blacks10 : LEMMA (blacks (0,NODES) (set_colour(n,TRUE) (m)) =
blacks(0,NODES) (m))
IMPLIES
colour(n) (m)
blacksi1 : LEMMA blacks(N,N)(m) = 0
black_rootsl : LEMMA black_roots(0) (m)

black_roots2 : LEMMA black_roots(N) (set_son(n,i,k)(m)) = black_roots(N) (m)

black_roots3 : LEMMA black_roots(N) (m) IMPLIES
black_roots(N) (set_colour(n,TRUE) (m))

55

black_roots4d :

bwl

bw2

bw3

exists_bwl

exists_bw2

exists_bw3

exists_bw4d

exists_bwb

exists_bw6

exists_bw7

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

LEMMA

black_roots(n+1) (set_colour(n,TRUE) (m)) =
black_roots(n) (m)

closed(m) IMPLIES
(NOT bw(nl,i1) (m) AND bw(nil,il) (set_son(n2,i2,k)(m)))
IMPLIES
(n1,i1)=(n2,1i2)

closed(m) IMPLIES
(NOT bw(n,i) (m) AND bw(n,i) (set_colour(k,TRUE) (m)))
IMPLIES
(n=k AND NOT colour(n) (m))

bw(n,i) (m) IMPLIES
colour(n) (m) AND NOT colour(son(n,i) (m)) (m)

exists_bw(N1,I1,N2,I2)(m) IMPLIES
EXISTS (n:Node,i:Index):
bw(n,i) (m) AND
NOT (n,i) < (N1,I1) AND
(n,i) < (N2,12)

closed(m) IMPLIES
(NOT exists_bw(0,0,N2,12)(m) AND
exists_bw(0,0,N2,I2)(set_son(n,i,k)(m)))
IMPLIES
(NOT colour(k)(m) AND (n,i) < (N2,I2))

(accessible(n) (m) AND
NOT colour(n) (m) AND
black_roots (ROOTS) (m))
IMPLIES
exists_bw(0,0,NODES,0) (m)

exists_bw(0,0,NODES,0) (m) IMPLIES
exists_bw(0,0,N,I)(m) OR exists_bw(N,I,NODES,0)(m)

closed(m) IMPLIES
(exists_bw(N,I,NODES,0) (m) AND (n,i) < (N,I))
IMPLIES
exists_bw(N,I,NODES,0) (set_son(n,i,k)(m))

closed(m) AND colour(n)(m) IMPLIES
exists_bw(N1,I1,N2,I2)(set_colour(n,TRUE) (m)) =
exists_bw(N1,I1,N2,I2)(m)

exists_bw(0,0,N+1,0) (m)

56

exists_bw8

exists_bw9

exists_bwl0

exists_bwilil

exists_bwl?2

exists_bwil3

points_tol

pointedl

pointed?2

pointed3

pointed4

pointed5

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

IMPLIES
exists_bw(0,0,N,SONS) (m)

exists_bw(N,SONS,NODES,0) (m)
IMPLIES
exists_bw(N+1,0,NODES,0) (m)

(NOT colour(n)(m) AND exists_bw(0,0,n+1,0)(m))
IMPLIES
exists_bw(0,0,n,0) (m)

(NOT colour(n)(m) AND exists_bw(n,0,NODES,0)(m))
IMPLIES
exists_bw(n+1,0,NODES,0) (m)

(colour(son(n,i)(m)) (m) AND exists_bw(0,0,n,i+1)(m))
IMPLIES
exists_bw(0,0,n,i) (m)

(colour(son(n,i)(m)) (m) AND exists_bw(n,i,NODES,0) (m))
IMPLIES
exists_bw(n,i+1,NODES,0) (m)

NOT exists_bw(N,I,N,I)(m)

(k /= n2 AND points_to(nl,n2) (set_son(n,i,k)(m)))
IMPLIES
points_to(n1,n2) (m)

(NOT member(k,1) AND pointed(l)(set_son(n,i,k)(m)))
IMPLIES
pointed(1l) (m)

(pointed(1) (m) AND cons?(1l) AND x <= last_index(1l))
IMPLIES
pointed(suffix(1,x)) (m)

pointed(cons(n,1)) (m) IMPLIES pointed(1) (m)

(cons?(1l) AND points_to(n,car(1l)) (m) AND pointed(1) (m))
IMPLIES
pointed(cons(n,1)) (m)

(cons?(11) AND cons?(12) AND

points_to(last(11),car(12)) (m) AND

pointed(11) (m) AND pointed(12) (m))
IMPLIES

57

pathl

accessiblel

propagatedi

propagated?2

blackenedil

blackened?2

blackened3

blackened4

blackened5

blackened6

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

: LEMMA

END Memory_Properties

pointed(append(11,12)) (m)

(path(11) (m) AND
cons?(12) AND
points_to(last(11),car(12))(m) AND
pointed(12) (m))
IMPLIES
path(append(11,12)) (m)

(accessible(k) (m) AND accessible(nl) (set_son(n,i,k)(m)))

IMPLIES
accessible(n1) (m)

(cons?(1l) AND pointed(1l) (m) AND

colour(car(l))(m) AND propagated(m))
IMPLIES

colour(last (1)) (m)

propagated(m) = NOT exists_bw(0,0,NODES,0) (m)

(accessible(k) (m) AND blackened(N) (m))
IMPLIES
blackened(N) (set_son(n,i,k) (m))

blackened(N) (m) IMPLIES
blackened(N) (set_colour(n,TRUE) (m))

(black_roots(ROOTS) (m) AND propagated(m))
IMPLIES
blackened(0) (m)

blackened(n) (m) IMPLIES
blackened(nt+1) (set_colour(n,FALSE) (m))

(NOT accessible(n)(m) AND blackened(n) (m))
IMPLIES
blackened(n+1) (append_to_free(n) (m))

(blackened(n) (m) AND accessible(n)(m)) IMPLIES
colour(n) (m)

Garbage_Collector_Proof[NODES : posnat, SONS : posnat, ROOTS : posnat]

BEGIN

58

: THEORY

ASSUMING
roots_within : ASSUMPTION ROOTS <= NODES
ENDASSUMING

IMPORTING Garbage_Collector [NODES,SONS,R0O0TS]
IMPORTING Memory_Properties[NODES,SONS,RO0TS]

IMPLIES (p1,p2:pred[State]):bool =
FORALL (s:State): pl(s) IMPLIES p2(s);

&(pl,p2:pred[State]):pred[State] =
LAMBDA (s:State): p1(s) AND p2(s)

invariant (p:pred[State]):bool =
FORALL (tr:(trace)):
FORALL (n:nat):p(tr(n))

preserved(I:pred[State]) (p:pred[State]):bool =
(initial IMPLIES p) AND
FORALL (s1,s2:State):
I(s1) AND p(s1) AND mnext(si,s2) IMPLIES p(s2)

YA A Y A YA YA AN Y YA Y
% Invariant Predicates %

YA Y A YA Y Y YA AN S YA AN
s : VAR State
invi(s):bool =

I(s) <= NODES AND
((CHI(s)=CHI2 OR CHI(s)=CHI3) IMPLIES I(s) < NODES)

inv2(s): bool =
J(s) <= SONS

inv3(s) :bool =
K(s) <= ROOTS

inv4(s) :bool =
H(s) <= NODES AND
(CHI(s)=CHI5 IMPLIES H(s) < NODES) AND
(CHI(s)=CHI6 IMPLIES H(s) = NODES)

inv5(s) :bool =
L(s) <= NODES AND

59

(CHI(s)=CHI8 IMPLIES L(s) < NODES)

inv6(s) :bool =
Q(s) < NODES

inv7(s) :bool =
closed(M(s))

inv8(s) :bool =
(CHI(s)=CHI4 DR CHI(s)=CHI5) IMPLIES BC(s) <= blacks(0,H(s)) (M(s))

inv9(s) :bool =
CHI(s)=CHI6 IMPLIES BC(s) <= blacks(0,NODES) (M(s))

inv10(s) :bool =
(CHI(s)=CHIO OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3)
IMPLIES
DBC(s) <= blacks(0,NODES) (M(s))

inv11(s) :bool =
(CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6)
IMPLIES
0OBC(s) <= BC(s) + blacks(H(s),NODES) (M(s))

inv12(s) :bool =
BC(s) <= NODES

inv13(s):bool =
CHI(s)=CHI6 IMPLIES 0BC(s) <= BC(s)

inv14(s) :bool =
(CHI(s)=CHIO OR CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3 OR
CHI(s)=CHI4 OR CHI(s)=CHI5 OR CHI(s)=CHI6)
IMPLIES
black_roots(IF CHI(s)=CHIO THEN K(s) ELSE ROOTS ENDIF) (M(s))

inv15(s) :bool =
FORALL (n:Node,i:Index):

(((CHI(s)=CHI1 DR CHI(s)=CHI2 DR CHI(s)=CHI3) AND
blacks (0,NODES) (M(s)) = 0BC(s) AND
(n,i) < (I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) AND
bw(n,i) M(s)))

IMPLIES
(MU(s)=MU1 AND son(n,i) (M(s))=Q(s)))

inv16(s) :bool =
((CHI(s)=CHI1 OR CHI(s)=CHI2 DR CHI(s)=CHI3) AND

60

blacks (0,NODES) (M(s)) = 0OBC(s) AND

exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) (M(s)))
IMPLIES

MU (s)=MU1

inv17(s) :bool =
((CHI(s)=CHI1 OR CHI(s)=CHI2 OR CHI(s)=CHI3) AND
blacks (0,NODES) (M(s)) = DBC(s) AND
exists_bw(0,0,I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF) (M(s)))
IMPLIES
exists_bw(I(s),IF CHI(s)=CHI3 THEN J(s) ELSE 0 ENDIF,NODES,0) (M(s))

inv18(s) :bool =
((CHI(s)=CHI4 OR CHI(s)=CHIS OR CHI(s)=CHI6) AND
0BC(s) = BC(s) + blacks(H(s),NODES) (M(s)))
IMPLIES
blackened(0) (M(s))

inv19(s) :bool =
(CHI(s)=CHI7 OR CHI(s)=CHIS8)
IMPLIES
blackened(L(s)) (M(s))

safe(s) :bool =
CHI(s) = CHI8 AND accessible(L(s))(M(s))
IMPLIES
colour(L(s)) (M(s))

YA A YA YA
% Invariant %

DhNDhbh bttt

I : pred[State] = invl & inv2 & inv3 & inv4d & inv5 &
invé & inv7 & inv8 & inv9 & inv10 &
invll & inv12 & inv14 & inv15 & inv17 &
inv18 & inv19

pi : [pred[State] -> bool] = preserved(I)
pi_and : LEMMA FORALL (X,Y:pred[State]):

(pi(X) AND pi(Y)) IMPLIES pi(X & Y)

DIt toto oo lototoTotoTale o Toto T oo Tote
% Logical Consequences %

DNt ts oo lolotolotoole o Toto oo toTote

61

p-inv13 : LEMMA inv4 & inv11l IMPLIES invi13
p_inv16 : LEMMA inv15 IMPLIES inv16é
p_safe : LEMMA inv5 & inv19 IMPLIES safe

D lolotolotototololotfototetoteto e folele
% Delta Implications %
Dttt totoolola o totetoteto ot toole

IMPLIES invl
IMPLIES inv2
IMPLIES inv3
IMPLIES inv4
IMPLIES inv5
IMPLIES invé
IMPLIES inv7
IMPLIES inv8
IMPLIES inv9
IMPLIES inv10
IMPLIES invi1l
IMPLIES inv12
IMPLIES inv13
IMPLIES inv14
IMPLIES inv15
IMPLIES inv16
IMPLIES inv17
IMPLIES inv18
IMPLIES inv19

i_invl : LEMMA
i_inv2 : LEMMA
i_inv3 : LEMMA
i_inv4 : LEMMA
i_inv5 : LEMMA
i_invé : LEMMA
i_inv7 : LEMMA
i_inv8 : LEMMA
i_inv9 : LEMMA
i_inv10 : LEMMA
i_inv11l : LEMMA
i_inv12 : LEMMA
i_inv13 : LEMMA
i_inv14 : LEMMA
i_inv15 : LEMMA
i_inv1i6é : LEMMA
i_inv17 : LEMMA
i_inv18 : LEMMA
i_inv19 : LEMMA

H o o

i_safe : LEMMA I IMPLIES safe

YAYAANA YA YA S
% Preserved Y%

Dl lotototototetolotstoe

p_invl : LEMMA pi(invl)
p_inv2 : LEMMA pi(inv2)
p_inv3 : LEMMA pi(inv3)
p_inv4 : LEMMA pi(inv4)
p_inv5 : LEMMA pi(inv5)
p_invé : LEMMA pi(invé)
p_inv7 : LEMMA pi(inv7)
p_inv8 : LEMMA pi(inv8)
p_inv9 : LEMMA pi(inv9)
p_inv10 : LEMMA pi(inv10)
p_invil : LEMMA pi(inv11)

62

p_inv12 :
p_invi4 :
p_invi15 :
: LEMMA pi(invi7)

p_inv17

p_invi8 :
: LEMMA pi(inv19)

p-inv19

LEMMA pi(inv12)
LEMMA pi(inv14)
LEMMA pi(inv15)

LEMMA pi(inv18)

YAYAANA AN YA YA YA AA
% Main Invariant %

Dl lototototote o lots o tote oo o e

p_I

correct :

safe

: LEMMA pi(I)

LEMMA invariant (I)

: LEMMA invariant(safe)

END Garbage_Collector_Proof

63

64

Appendix B

The Murphi Formalization

Const
NODES : 3; MAX_NODE : NODES-1;
SONS : 2; MAX_SON : SONS-1
ROOTS : 1; MAX_ROOT : ROOTS-1;

Type
NumberOfNodes : 0..NODES;
Colour : boolean;

Node : 0..MAX_NODE;
Index : 0..MAX_SON;
Root : 0..MAX_ROOT;

NodeStruct : Record
colour : Colour;
cells : Array[Index] 0f Node;
End;

Var
MU : Enum{MUO,MU1};
CHI : Enum{CHIO,CHI1,CHI2,CHI3,CHI4,CHI5,CHI6,CHI7,CHI8};

65

Q : Node;
BC : NumberOfNodes;
0OBC : NumberOfNodes;

I,L,H : 0..NODES;
J : 0..S0NS;
K 0..ROOTS;

Var
M : Array[Node] 0f NodeStruct;

Function colour(n:Node):Colour;
Begin

Return M[n].colour;
End;

Procedure set_colour(n:Node;c:Colour);
Begin

M[n].colour := c;
End;

Function son(n:Node;i:Index):Node;
Begin

Return M[n].cells[i]
End;

Procedure set_son(n:Node;i:Index;k:Node);
Begin

M[n].cells[i] := k;
End;

Function is_root(n:Node) :boolean;
Begin

Return n < ROOTS
End;

Function accessible(n:Node) :boolean;

Type
Status : Enum{TRY,UNTRIED,TRIED};
Var

66

status : Array[Node] Of Status;
s : Node;
try_again : boolean;
Begin
For k:Node Do
status[k] := (is_root(k) ? TRY : UNTRIED)

EndFor;

try_again := true;

While try_again Do
try_again := false;

For k:Node Do
If status[k]=TRY Then
For j:Index Do
s := son(k,j);
If status[s]=UNTRIED Then

status[s] := TRY;
try_again := true;
End;
EndFor;
status[k] := TRIED;
End;
EndFor;
End;
Return status[n]=TRIED
End;

Procedure append_to_free(new_free:Node);
Var
old_first_free : Node;
Begin
old_first_free := son(0,0);
set_son(0,0,new_free);
For i:Index Do set_son(new_free,i,old_first_free) EndFor;
End;

Procedure initialise_memory();
Begin
For n:Node Do
set_colour(n,false);
For i:Index Do
set_son(n,i,0);
EndFor;
EndFor;

67

End;

Startstate

Begin
MU := MUO;
CHI := CHIO;
clear Q;
clear BC;
OBC := 0;
clear I;
clear J;
K := 0;
clear L;
clear H;
initialise_memory();

End;

-- MUO : Redirect arbitrary pointer.

Ruleset m:Node; i:Index; n: Node Do
Rule "mutate"
MU = MUO & accessible(n)

==>
set_son(m,i,n);
Q :=n;
MU := MU1;
End;
End;

-- MU1 : Colour target of redirection.

Rule "colour_target"
MU = MU1
set_colour(Q,true);
MU := MUO;

End;

68

-- CHIO : Blacken.

Rule "stop_blacken"
CHI = CHIO &
K = ROOTS
==>
I :=0;
CHI := CHI1;
End;

Rule "blacken"
CHI = CHIO &
K !'= ROOTS

set_colour(K,true);

K := K+1;
CHI := CHIO;
End;

-- CHI1 : Decide whether to continue propagating.

Rule "stop_propagate"

CHI = CHI1 &

I = NODES

BC := 0;

H := 0;

CHI := CHI4;
End;

Rule "continue_propagate"

CHI = CHI1 &
I !'= NODES
CHI := CHIZ2;

69

End;
-- CHI2 : (Continue) Check whether node is black.

Rule "white_node"
CHI = CHI2 &
'colour(I)

I :=1I+1;
CHI := CHI1;
End;

Rule "black_node"
CHI = CHI2 &
colour(I)

J :=0;
CHI := CHI3;

End;

-- CHI3 : (Node is black) Colour each son of node.

Rule "stop_colouring_sons"
CHI = CHI3 &
J = SONS

I :=1I+1;
CHI := CHI1;
End;

Rule '"colour_son"
CHI = CHI3 &
J '= SONS

set_colour(son(I,J),true);

J = J+1;
CHI := CHI3;
End;

== CHI4 : Decide whether to continue counting.

Rule "stop_counting"
CHI = CHI4 &

70

Rule "continue_counting"

CHI = CHI4 &

H !'= NODES

CHI := CHI5;
End;

-- CHI5 : (Continue) Count one up if black.

Rule "skip_white"
CHI = CHIS5 &
'colour(H)

H := H+1;
CHI := CHI4;
End;

Rule "count_black"

CHI = CHIS &

colour (H)

BC := BC+1;

H := H+1;

CHI := CHI4;
End;

-- CHI6 : Compare BC and 0BC.

Rule "redo_propagation"

CHI = CHI6 &

BC !'= 0BC

0BC := BC;

I :=0;

CHI := CHI1;
End;

Rule "quit_propagation"

CHI = CHI6 &
BC = OBC
L :=0;

71

CHI := CHI7;
End;

-- CHI7 : Decide whether to continue appending.

Rule "stop_appending"

CHI = CHI7 &

L = NODES

BC := 0;

0BC := 0;

K := 0;

CHI := CHIO;
End;

Rule "continue_appending"

CHI = CHI7 &

L !'= NODES

CHI := CHIS8
End;

-- CHI8 : (Continue) Append if white.

Rule "black_to_white"
CHI = CHI8 &
colour (L)

set_colour(L,false);

L := L+1;
CHI := CHI7;
End;

Rule "append_white"
CHI = CHI8 &
'colour(L)

append_to_free(L);

L := L+1;
CHI := CHI7
End;

72

-- Specification --

Invariant "safe"
CHI = CHI8 & accessible(L) ->
colour(L);

73

Bibliography

[1] M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Toplas,

[2]

[3]

[4]

[5]

6, July 1984.

S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the
automatic generation of invariants. In Computer Aided Verification 96,
Lecture Notes in Computer Science, 1996. To appear.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundalion.
Addison Wesley, 1988.

J. L. A. Van de Snepscheut. “algorithms for on-the-fly garbage collec-
tion” revisited. Information Processing Letters, 24, March 1987.

E. W. Dijkstra, L. Lamport, A.J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: An exercise in cooperation.
ACM, 21, November 1978.

K. Havelund and N. Shankar. Experiments in theorem proving and
model checking for protocol verification. In M-C. Gaudel and J. Wood-
cock, editors, FMFE’96: Industrial Benefit and Advances in Formal
Methods, volume 1051 of Lecture Noles in Compuler Science, pages
662-681. Springer-Verlag, 1996.

L. Lamport. The Temporal Logic of Actions. Technical report, Digital
Equipment Corporation (DEC) Systems Research Center, Palo Alto,
California, USA, April 1994.

R. Melton, D.L. Dill, and C. Norris Ip. Murphi annotated reference
manual, version 2.6. Technical report, Stanford University, Palo Alto,
California, USA, November 1993. Written by C. Norris Ip.

74

[9] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification

for fault-tolerant architectures: Prolegomena to the design of PVS.
21(2):107-125, February 1995.

[10] C. Pixley. An incremental garbage collection algorithm for multi-
mutator systems. Distributed Computing, 3, 1988.

[11] David M. Russinoff. A mechanically verified incremental garbage col-
lector. Formal Aspects of Computing, 6:359-390, 1994.

[12] N. Shankar. Mechanized verification of real-time systems using PVS.
Technical report, Computer Science Laboratory, SRI International,
Menlo Park, California, USA, March 1993.

75

